Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microbiol Spectr ; 10(5): e0056322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053135

ABSTRACT

The emergence of the SARS-CoV-2 B.1.617.2 lineage (Delta variant) in 2021 was associated with increased case numbers and test positivity rates, including a large number of infections in fully vaccinated individuals. Here, we describe the findings of an investigation conducted in Tompkins County, New York, to evaluate factors underlying a significant uptick in the number of coronavirus disease 2019 (COVID-19) cases observed in the months of July and August 2021. We performed genomic surveillance and genotyping as well as virological assessments to determine infectivity of the virus in a select number of clinical diagnostic samples. Genomic sequence analyses revealed complete replacement of the B.1.1.7 lineage (Alpha variant) with the B.1.617.2 lineage (Delta variant) between July 1 and August 4 2021. We observed a strong association between viral RNA loads detected by real-time reverse transcriptase PCR and infectious virus detected in respiratory secretions by virus titration. A marked increase in positive cases among fully vaccinated individuals was observed. The sequence divergence between two index Delta variant cases in April and May, and the cases after July 1st, revealed independent Delta variant introductions in Tompkins County. Contact tracing information enabled the detection of clusters of connected cases within closely related phylogenetic clusters. We also found evidence of transmission between vaccinated individuals and between vaccinated and unvaccinated individuals. This was confirmed by detection and isolation of infectious virus from a group of individuals within epidemiologically connected transmission clusters, confirming shedding of high viral loads and transmission of the virus by fully vaccinated individuals. IMPORTANCE The SARS-CoV-2 lineage B.1.617.2 (Delta variant) emerged in Asia and rapidly spread to other countries, becoming the dominant circulating lineage. Worldwide infections with B.1.617.2 peaked at a time in which vaccination rates were increasing. In this study, we present data characterizing the emergence of SARS-CoV-2 lineage B.1.617.2 (Delta variant) in Tompkins County, New York, which has one of the highest vaccination rates in the state. We present evidence demonstrating infection, replication, and transmission of SARS-CoV-2 lineage B.1.617.2 (Delta variant) between fully vaccinated individuals. Importantly, infectious virus loads were determined in a subset of samples and demonstrated shedding of high viral titers in respiratory secretions of vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Phylogeny , COVID-19/epidemiology
2.
Microbiol Spectr ; 10(3): e0226421, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1846340

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral RNA load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n = 29), asymptomatic (n = 31), or postsymptomatic (n = 15). Specimens were collected at one time point from each individual, between day 1 and 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by health care provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from postsymptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals. IMPORTANCE The dynamics of infection with SARS-CoV-2 have a significant impact on virus infectivity and in the diagnostic sensitivity of molecular and classic virus detection tests. In the present study we determined the diagnostic sensitivity of paired respiratory (nasopharyngeal and anterior nares swabs) and oral secretions (saliva and sublingual swab) and assessed infectious virus shedding patterns by symptomatic, asymptomatic, or postsymptomatic individuals. Understanding the diagnostic performance of these specimens and the patterns of infectious virus shedding in these bodily secretions provides critical information to control COVID-19, and may help to refine guidelines on isolation and quarantine of positive individuals and their close contacts identified through epidemiological investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling , Viral Load
3.
Emerg Infect Dis ; 27(12): 3171-3173, 2021 12.
Article in English | MEDLINE | ID: covidwho-1528797

ABSTRACT

We report infection of 3 Malayan tigers with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) variant at a zoologic park in Virginia, USA. All tigers exhibited respiratory signs consistent with SARS-CoV-2 infection. These findings show that tigers are susceptible to infection with the SARS-CoV-2 B.1.1.7 variant.


Subject(s)
COVID-19 , Tigers , Animals , Humans , SARS-CoV-2 , Virginia/epidemiology
4.
Arch Virol ; 166(9): 2551-2561, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309044

ABSTRACT

The aim of this study was to identify and validate a sensitive, high-throughput, and cost-effective SARS-CoV-2 real-time RT-PCR assay to be used as a surveillance and diagnostic tool for SARS-CoV-2 in a university surveillance program. We conducted a side-by-side clinical evaluation of a newly developed SARS-CoV-2 multiplex assay (EZ-SARS-CoV-2 Real-Time RT-PCR) with the commercial TaqPath COVID-19 Combo Kit, which has an Emergency Use Authorization from the FDA. The EZ-SARS-CoV-2 RT-PCR incorporates two assays targeting the SARS-CoV-2 N gene, an internal control targeting the human RNase P gene, and a PCR inhibition control in a single reaction. Nasopharyngeal (NP) and anterior nares (AN) swabs were tested as individuals and pools with both assays and in the ABI 7500 Fast and the QuantStudio 5 detection platforms. The analytical sensitivity of the EZ-SARS-CoV-2 RT-PCR assay was 250 copies/ml or approximately 1.75 genome copy equivalents per reaction. The clinical performance of the EZ-SARS-CoV-2 assay was evaluated using NP and AN samples tested in other laboratories. The diagnostic sensitivity of the assay ranged between 94 and 96% across the detection platforms, and the diagnostic specificity was 94.06%. The positive predictive value was 94%, and the negative predictive value ranged from 94 to 96%. Pooling five NP or AN specimens yielded 93% diagnostic sensitivity. The overall agreement between these SARS-CoV-2 RT-PCR assays was high, supported by a Cohen's kappa value of 0.93. The EZ-SARS-CoV-2 RT-PCR assay performance attributes of high sensitivity and specificity with AN sample matrix and pooled upper respiratory samples support its use in a high-throughput surveillance testing program.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/instrumentation , Epidemiological Monitoring , Gene Expression , Humans , Multiplex Polymerase Chain Reaction/economics , Multiplex Polymerase Chain Reaction/instrumentation , Nasal Cavity/virology , Nasopharynx/virology , Phosphoproteins/genetics , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling/methods , Viral Load
5.
mBio ; 11(5)2020 10 13.
Article in English | MEDLINE | ID: covidwho-868276

ABSTRACT

Despite numerous barriers to transmission, zoonoses are the major cause of emerging infectious diseases in humans. Among these, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and ebolaviruses have killed thousands; the human immunodeficiency virus (HIV) has killed millions. Zoonoses and human-to-animal cross-species transmission are driven by human actions and have important management, conservation, and public health implications. The current SARS-CoV-2 pandemic, which presumably originated from an animal reservoir, has killed more than half a million people around the world and cases continue to rise. In March 2020, New York City was a global epicenter for SARS-CoV-2 infections. During this time, four tigers and three lions at the Bronx Zoo, NY, developed mild, abnormal respiratory signs. We detected SARS-CoV-2 RNA in respiratory secretions and/or feces from all seven animals, live virus in three, and colocalized viral RNA with cellular damage in one. We produced nine whole SARS-CoV-2 genomes from the animals and keepers and identified different SARS-CoV-2 genotypes in the tigers and lions. Epidemiologic and genomic data indicated human-to-tiger transmission. These were the first confirmed cases of natural SARS-CoV-2 animal infections in the United States and the first in nondomestic species in the world. We highlight disease transmission at a nontraditional interface and provide information that contributes to understanding SARS-CoV-2 transmission across species.IMPORTANCE The human-animal-environment interface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important aspect of the coronavirus disease 2019 (COVID-19) pandemic that requires robust One Health-based investigations. Despite this, few reports describe natural infections in animals or directly link them to human infections using genomic data. In the present study, we describe the first cases of natural SARS-CoV-2 infection in tigers and lions in the United States and provide epidemiological and genetic evidence for human-to-animal transmission of the virus. Our data show that tigers and lions were infected with different genotypes of SARS-CoV-2, indicating two independent transmission events to the animals. Importantly, infected animals shed infectious virus in respiratory secretions and feces. A better understanding of the susceptibility of animal species to SARS-CoV-2 may help to elucidate transmission mechanisms and identify potential reservoirs and sources of infection that are important in both animal and human health.


Subject(s)
Animals, Zoo/virology , Betacoronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Pandemics/veterinary , Panthera/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Genome, Viral/genetics , Haplotypes , Humans , New York City/epidemiology , One Health , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL